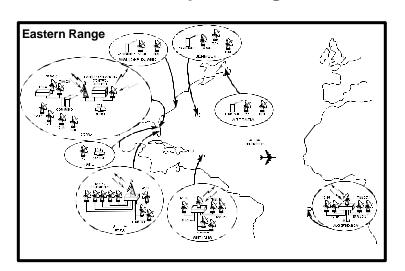
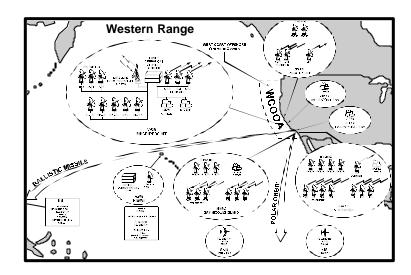

NASA Space Network Support for Range Safety

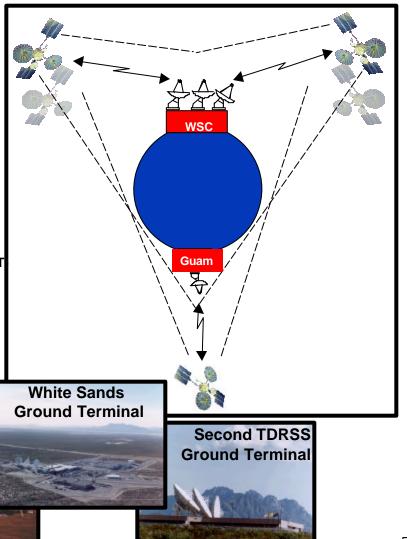
Ted C. Sobchak NASA/Goddard Space Flight Center Greenbelt, Maryland USA ted.sobchak@gsfc.nasa.gov (301) 286-7813

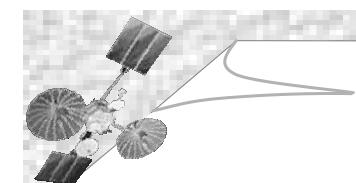

- Introduction
- Background
- SN/TDRSS Overview
- Proposed Space-Based Range Safety
 - Concept Description
 - Main Components
 - Operations Scenario
 - Specific Operations Considerations
- New Technology
- Proof-Of-Concept Testing
- Technical Challenges
- Conclusion



- Range Safety Service can be defined as those communication services provided at the launch range to maintain the integrity of the launch system and avoid threat to Human Life
- The current system is effective, but could benefit from New Technology
 - Reduce Cost
 - Improve Flexibility
 - Increase Coverage
 - Maintain Reliability
 - Maintain Safety

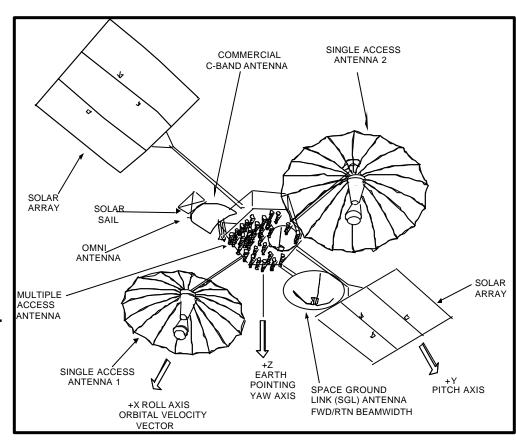
- U.S Range Launch Activities trace back to the 1940's
 - Current Range Safety Systems are Ground-Based UHF Systems
 - Requires Significant Down Range Resources

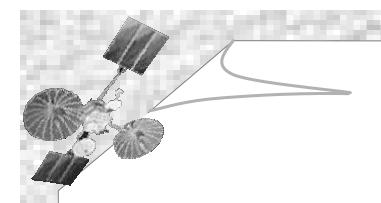

- Investigations to provide Range Safety Service via Space-Based Platforms have been initiated
 - Tracking and Data Relay Satellite System (TDRSS) seems a viable "Stepping Stone" into the future Space-Based Platform support
 - The TDRSS includes a Ground Segment, Space Segment, and Supporting Elements


Ground Segment

- The White Sands Complex (WSC) is the user interface to the TDRS spacecraft
- WSC is comprised of two co-located ground terminals located in New Mexico, USA and a remote extension in Guam
 - There is a total of six (6) Space Ground Link Terminals (SGLT

Guam


- Each SGLT is assigned a TDRS spacecraft and provides TDRS Control and User Services
- A three-TDRS constellation provides global coverage

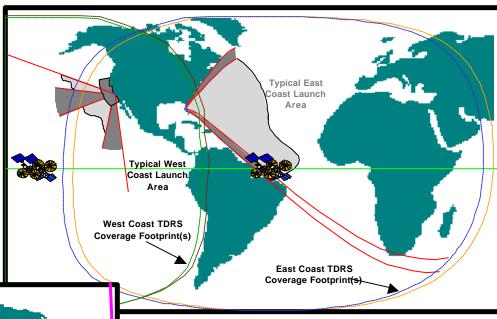


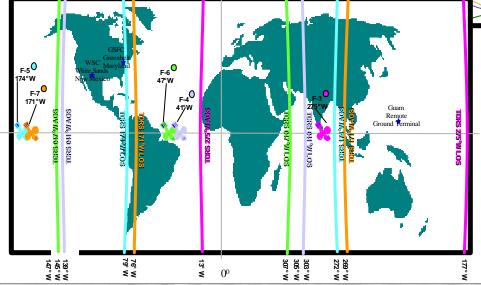
Space Segment/TDRS Spacecraft Description

- Five operational TDRS spacecraft in geosynchronous orbit
- Strategic equatorial placement to provide global RF coverage for support of spacecraft, launch vehicles, and reusable vehicles
- TDRS operates in both the S- and Ku-Band frequencies. For this concept, focus is the S-Band frequency
- Forward S-Band Frequency: 2025-2120 MHz
- Return S-Band Frequency: 2200-2300 MHz

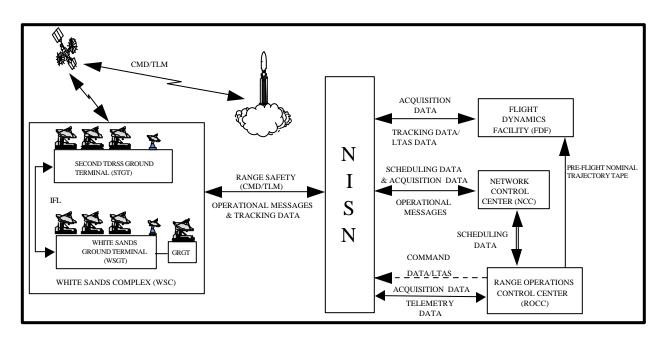
Future Space Segment

- Three (3) new next generation
 TDRS spacecraft will be added to the constellation
 - TDRS H,I,J built by Hughes
 - Launched on the Atlas series launch vehicle
- The new spacecraft will support all current TDRS services plus:
 - Ka-Band frequency
 - Enhanced S-Band Multiple Access services
- The Range Safety concept will continue to focus on S-Band services



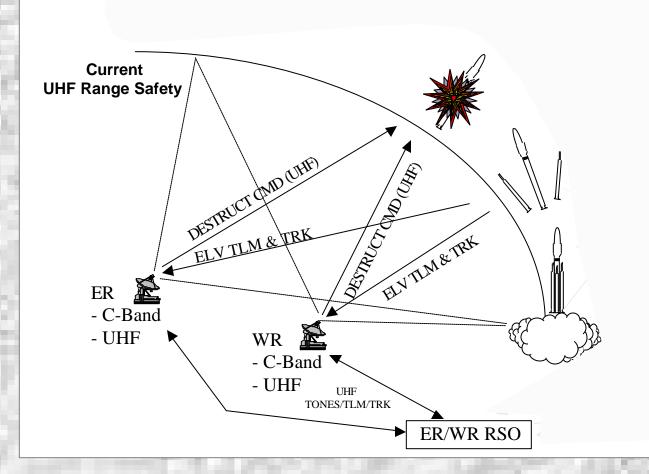

TDRS-H

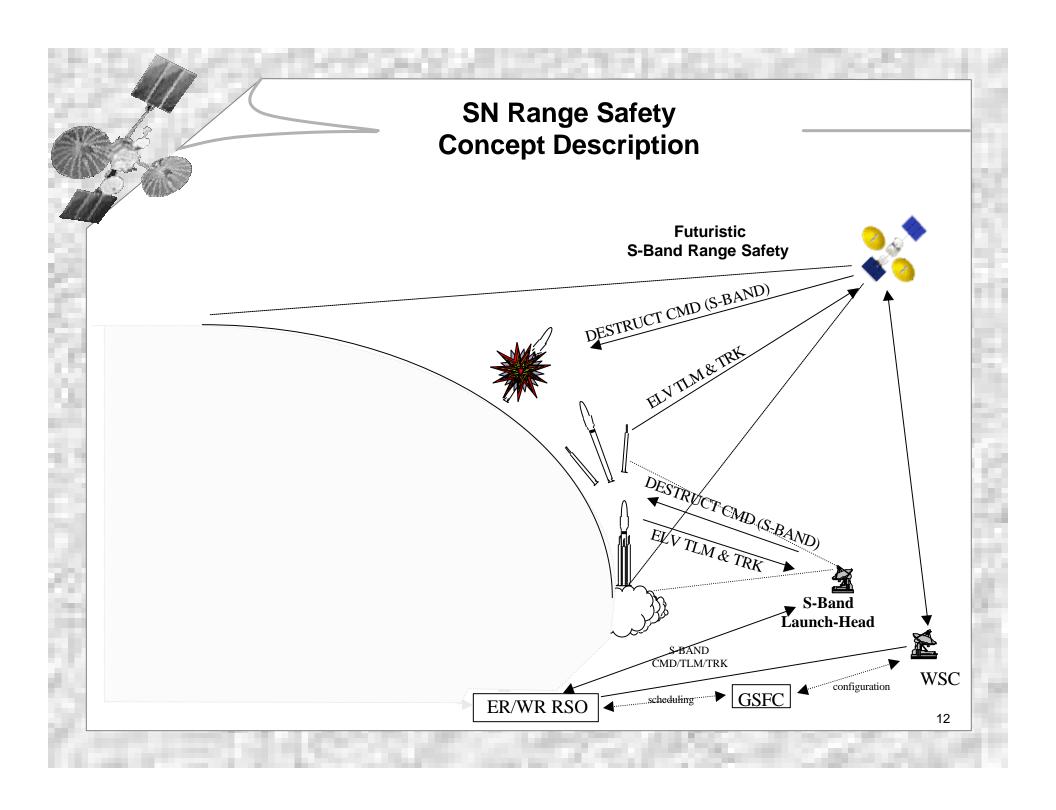
TDRSS Coverage


 Sufficient coverage to provide Range Safety services to various launch ranges without handovers

- Five operational TDRS, each TDRS provides coverage over a certain range
- If TDRS services are used from Launch through Insertion, coverage can be provided with minimal handovers

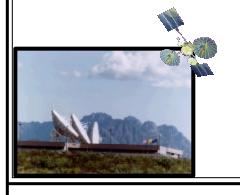
SN/TDRSS Overview SN/TDRSS Support Elements

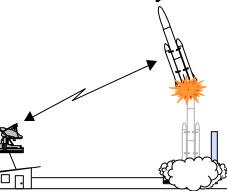



- The SN support elements for Range Safety include: Network Control Center (NCC), Flight Dynamics Facility (FDF), and NASA Integrated Services Network (NISN)
 - NCC: Located at GSFC, the NCC is the point of contact for all networks planning, scheduling, and control
 - FDF: Located at GSFC, the FDF is responsible for TDRS and User spacecraft ephemeredes, tracking data, and TDRS pointing
 - NISN: Managed from MSFC with personnel at GSFC, the NISN provides all communication circuits between operations entities

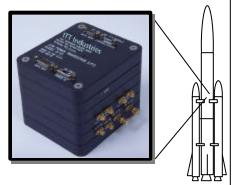
Proposed SN Range Safety Concept

- The NASA concept was proposed to determine Technical and Operational Feasibility of vehicle flight termination with a Space-Based Platform, namely the NASA Space Network (SN)
- SN Support for Range Safety Concept
 - Transition from UHF Ground-Based system to a Space-Based S-Band System with compatible S-Band Ground Launch Head and Launch Vehicle Component
 - Eliminate Down Range Stations and provide Continuous Coverage through All Launch Phases through Orbital Insertion
 - The combination of the SN/TDRSS and the Launch Head will provide a "Seamless" Transition Over-the Horizon
 - Launch Head and TDRSS Radiate PN Spread Signals Simultaneously
 - Vehicle Transceiver able to track both Launch Head and TDRSS forward signals simultaneously and return telemetry with vehicle range safety parameters and position data (GPS)


SN Range Safety Concept Description



SN Range Safety Main Components


Tracking and Data Relay Satellite System (TDRSS)

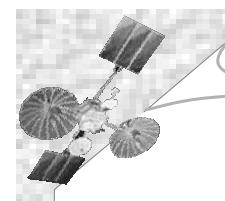
TDRSS-Compatible Launch-Head System

Vehicle TDRSS-Compatible Transceiver

- PN Spread Forward Link; High power mode
- TDRS S-Band Footprint is ~700 miles in diameter at the Earth's surface
- Sufficient coverage to provide Range Safety services to ER or WR without handovers

- S-Band TDRS Compatible
- PN Spread Forward Link
- Primary vehicle interface until Over-the-Horizon (OTH); Seamless transition from ground to space
- Pre-Launch Test Resource

- S-Band TDRS Compatible Low Power Transceiver
- Fast acquisition
- Multi-channel receiver for simultaneous Forward links from the TDRS and Launch-Head
 - Use separate PN Codes
- Telemetry will provide vehicle status and position data from GPS


- On the launch pad, the Launch-Head is prime communications interface
- After launch and clear of initial interference (such as the Launch Tower), the vehicle acquires TDRS
- Launch-Head and TDRS simultaneously radiate S-Band PN-Spread forward signal (commands), same frequency
- Launch-Head loses link Over-the-Horizon, TDRS is prime communications interface
- Flight Vehicle will carry two multi-channel transceivers capable of tracking three TDRS Mode PN Spread Signals and up to eight GPS signals
- Telemetry will be relayed to the ground both directly to the Launch-Head (when available) from the vehicle and via the TDRSS
 - Including position data from GPS and onboard IMU

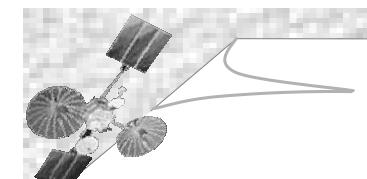
SN Range Safety Specific Operations Considerations

- Forward and Return Link Margins
 - Assumed antenna gain exceeded over 95% of the Vehicle RF Coverage
 Sphere
 - Assumed a Hybrid Coupler between antenna and two transceiver configuration
 - Data Rates Considered: 250bps Command/2.4kbps Telemetry
 - Forward Link Margin (command): ~10.8 dB
 - » Over 95% of the Coverage Sphere, link margin > 10.8 dB
 - » Remaining 5% of the Coverage Sphere, link margin <10.8 dB</p>
 - Return Link Margin (telemetry): ~ 7.4 dB
- Data Latency
 - Current range requirement = 500 milliseconds
 - Testing with a simulated control center sent digital commands to WSC (processed, modulated) then transmitted via TDRS to a simulated vehicle: Round-trip closed-loop test = 340-370 milliseconds
 - Circuit routing design may reduce data latency

- Security Considerations
 - PN-Spreading the Forward Link
 - Command Data Structure being developed for optimal performance: command length, latency, data rate, link margin
 - Focus is to prevent unwanted flight termination
- TDRSS Reliability
 - TDRSS reliability is defined as Mean Time Between Failures (MTBF - divide the 10-cycle of TDRSS by the predicted number of failures)
 - Operational support ≥ 99.9%
 - Redundancy within the SN (ground/space)
- Cost Comparisons
 - Space-Based reduces cost
 - M&O costs spread over Multiple Users
 - Reduced Resources (equipment and personnel)
 - Quicker Turn-Around Time for next support

New Technology

- Technology to support a Range Safety application is part of an ongoing NASA Technology Program
- The Low Power Transceiver (LPT) as applied for Range Safety
 - Modular design
 - Twelve-Channel (12) S and L-Band Receiver
 - For Range Safety: three channels configured TDRSS-Mode, eight GPS channels, one open channel
 - Fast Acquisition: < 1 Second
 - All receive channels configured as PN-Spread
 - **Telemetry transmitted at S-Band, TDRSS BPSK Modulation**
 - **Transmitter Output Power Options up to 25 Watts (power** will be a function of the telemetry data rate) and vehicle power
 - Size: 5x5x5 inches; Mass: 5 kg
 - Operating Temperature range: -30° to 75°C



Proof-of-Concept Testing

- Proof of Concept test will involve the SN, an S-band launch-head ground system, and the launch vehicle component (i.e., the LPT) on a flight vehicle
 - X-Vehicles (X-34, X-43)
 - High Performance Aircraft
 - Sounding Rockets
- Existing NASA resources (i.e., tracking station) would be augmented and used as a launch-head
- The vehicle component (i.e., LPT) will undergo environmental tests (shock, vibration, thermal vacuum)
- The Proof-of-Concept Program flight demonstration will demonstrate TDRSS-mode ground- and space-based forward and return links, as well as the capability to receive GPS
- Commands will be looped back internally and no connection with the vehicle Command and Data Handling (C&DH) system will be made
 - Looped back in the experiment package, not used for actual flight termination

SN Range Safety Schedule

Timeframe	Event	Event Description
Feb 2001	EM Range Safety Command Destruct Transceiver	Complete development of next EM multichannel RS Transceiver
May 2001	STS-107 Mission Payload Testing	LPT manifested as payload on Space Shuttle. First opportunity to observe simultaneous signal processing and over-the horizon ground-to-space transition thereby simulating RS concept
March - July 2001	EM Testing: Compatibility Environmental	Conduct series of testing to verify compatibility with the SN. Also conduct shock, vibration, thermal, and dynamic pitch/yaw/roll environmental tests.
Aug 2001- Aug 2002	Test Flights: High-Speed Aircraft Sounding Rocket RLV or X-Vehicle	Perform experiments of the SN RS concept as a payload on a flight vehicles. Current vehicles being considered include high-speed aircraft, a sounding rocket, or as a payload on an RLV/X-Vehicle.

Technical Challenges

- Optimal Command Data Structure considering command length, latency, data rate, link margin, and security
- Mitigating multi-path on Launch Pad through Liftoff
- Optimum power level differences between the Space and Ground-Based assets
- Specific Space-Based Range Safety operations have not been conducted
- Prove that the LPT is a valid component for the Range Safety Application

Conclusion

Competitive World Launch Market drives increases in flexibility and reduction in operating costs

- Extensive support infrastructure is costly to maintain and operate, thereby limiting launch turnaround time, launch site flexibility, and coverage area
- GSFC SN Project Office concept grafts new technology with a reliable, proven, and operational Space-Based platform
- GSFC, in conjunction with other NASA organizations and industry, is embarking on a development and test program
- A full proof-of-concept phase is evolving and is expected to culminate in flight demonstration tests with actual launch vehicles
- Concept focuses on Maintaining Public Safety
- Visit the NASA GSFC Mission Service Program Office and Range Safety
 Websites: Mission Service Program Office: http://nmsp.gsfc.nasa.gov/
 Range Safety: http://nmsp.gsfc.nasa.gov/range/range.html